Criteria for Head Injury and Helmet Standards

Jim Newman
NBEC Inc.

Snell Memorial Foundation Seminar
Medical College of Wisconsin, Milwaukee, Wisc., 6 May 2005
On the Use of the Head Injury Criterion (HIC) in Protective Headgear Evaluation

James A. Newman
Mechanical Engineering, University of Ottawa

PROCEEDINGS OF
NINETEENTH STAPP CAR CRASH CONFERENCE

November 17-19, 1975
San Diego, California
Head Injury Assessment Functions.

A head injury assessment function (HIAF) is a functional relationship between the probability/severity of brain injury and some measurable response of the head to impact.
Premises

- Head injury caused by head impact.
- Head impact causes head motion.
- Head motion characterized by rigid body kinematics.
- Kinematics usually expressed as linear acceleration.
- Most head injury assessment functions are based upon acceleration.
Exceptions

- High speed (ballistic) impact
- Low speed (crushing) loading
- Brain injury secondary to impact (e.g. swelling).
- Facial impact.
- Localized skull deformation.
Linear Kinematic Head Injury Assessment Functions

- **Maximum translational acceleration.**
- **Average acceleration plus time duration.**
- **Gadd Severity Index - GSI.**
- **Versace “Correction”.**
- **“Head Injury Criterion” - HIC.**
Helmet Impact Test Setup
Headform Acceleration Response
Maximum translational acceleration.

\[a_m < N \]

where \(a_m \) is the maximum value of the resultant head (c of g) linear accl’n.

Snell standards
Linear Kinematic Head Injury Assessment Functions

- Maximum translational acceleration.
- Average acceleration plus time duration.
Wayne State Concussion Tolerance Curve

Relationship of Front Flat Plate Fracture Acceleration Results to WSU Cerebral Concussion Tolerance Curve

<table>
<thead>
<tr>
<th>TEST NO</th>
<th>SEV. INDEX</th>
<th>EDI-IN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_{CG}</td>
<td>A_{A-P}</td>
</tr>
<tr>
<td>2</td>
<td>749</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>2020</td>
<td>1800</td>
</tr>
<tr>
<td>4</td>
<td>1280</td>
<td>792</td>
</tr>
<tr>
<td>6</td>
<td>565</td>
<td>390</td>
</tr>
<tr>
<td>29</td>
<td>1020</td>
<td>724</td>
</tr>
<tr>
<td>30</td>
<td>1250</td>
<td>561</td>
</tr>
</tbody>
</table>
Average acceleration and time duration.

\[
\bar{a}^{2.5} T < 1,000
\]

Never ever used to assess head impact severity or head protection systems.
Linear Kinematic Head Injury Assessment Functions

- Maximum translational acceleration.
- Average acceleration plus time duration.
- Gadd Severity Index.
Gadd Severity Index (1966).

\[
\frac{a^{2.5}}{T} < 1,000
\]

\[
\int_T^T a^{2.5} \, dt < 1,000
\]

NOCSAE football helmet standard.
Linear Kinematic Head Injury Assessment Functions

- Maximum Translational Acceleration.
- Average acceleration plus time duration.
- Gadd Severity Index - GSI.
- Versace “Correction”.

Versace “Correction”. (1971)

\[\sqrt[2.5]{\alpha^2} T < 1,000 \]

\[\left[\frac{1}{T} \int_{T} a(t) dt \right]^{2.5} T < 1,000 \]

If he’d only left it alone…………
Linear Kinematic Head Injury Assessment Functions

- Maximum translational acceleration.
- Maximum acceleration plus dwell times.
- Gadd Severity Index – GSI.
- Versace Correction.
- “Head Injury Criterion” - HIC.
“Head Injury Criterion” - HIC.

\[\left[\frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} a(t) dt \right]^{2.5} (t_2 - t_1) < 1,000 \]

FMVSS 208 - occupant protection
What’s wrong with HIC?

1. Introduced by NHTSA without peer review.
2. Assigns attributes to $a(t)$ based on a_{ave}
3. Provides “unsafe pulse” within a “safe” pulse.
4. Has nonsensical units.
5. Takes no consideration of
 1. Injury type.
 2. Rotation.
 3. Direction.
What’s right with HIC?

1. It contains a_{max}.
2. It correlates better than a_{max} because it introduces part of the “time duration” factor.
3. Risk curves have been developed.
HIC Brain Injury Risk Curve (Mertz)

\[\mu = 1434, \sigma = 430 \]
Linear Headform Response
Rotational Headform Response

![Rotational Headform Response Graph](image)

- Rotational Acceleration (rad/s/s)
- Time (s)
- X, Y, Z components